Data Analytics Certificate

Data Analytics Certificate Requirements

21 - 24 credits

Code	Title	Hours
CS 1400	Fundamentals of Programming	3
ISA 2010	Proficiency in Excel & SQL	0-3
or ISA 2011	Microsoft Office Specialist (MOS) Excel Expert Certification	
STAT 2040	Business Statistics	3
or MATH 1040	Introduction to Statistics (MA)	
MATH 2050	Applied Statistics with Programming	3
ISA 3020	SQL & Python for Analytics	3
ISA 4060	Big Data Analytics	3
or IT 4060	Big Data Analytics	
ISA 4070	Data Visualization and Storytelling	3
or IT 4070	Data Visualization and Storytelling	
MATH 4800	Industrial Careers in Mathematics	3
Total Hours		21-24

Completion Requirements

- 1. Grade C- or higher in each Discipline Core Requirement course.
- 2. GPA 2.5 or higher Discipline Core Requirement courses.

Data Analytics Certificate Program Learning Outcomes

At the successful completion of this certificate, students will be able to:

- 1. Compose solutions to computational problems using fundamental programming abstractions.
- 2. Apply data and statistical best practices to collect, cleanse, transform, and store data for subsequent analysis.
- 3. Evaluate and use appropriate statistical concepts to respond to a variety of problems/issues from various disciplines.
- 4. Create graphically encoded data in useful formats from previously analyzed data and demonstrate the accurate communication of the findings for data problems to decision makers with diverse skill levels.
- 5. Develop, test, and implement a mathematical model of their own devising by working in teams to solve interdisciplinary problems, and write a professional report describing their model and results that meets the practical constraints of a client.