Modeling and Simulation Certificate

Modeling and Simulation Certificate Requirements 20 Credits

Code	Title	Hours
CS 1400	Fundamentals of Programming	3
MATH 1210	Calculus I (MA) (Prerequisites: MATH 1010 and MATH 1050 and MATH 1060 or MATH 1080 or equivalent placement score)	4
MATH 2050	Applied Statistics with Programming (Prerequisites: MATH 1040 or MATH 1050) or equivalent placement score)	t 3
or STAT 2040	Business Statistics	
or MATH 3060	Statistics for Scientists	
MATH 2285	Adventures in Modeling	1
MATH 3050	Stochastic Modeling and Applications	3
MATH 3605	Introduction to Modeling and Simulation	3
MATH 4800	Industrial Careers in Mathematics	3

Completion Requirements

- 1. Complete 20 credit hours of required courses. Prerequisite courses are stacked within other degree plans.
- 2. Cumulative GPA of 2.0 or higher

Modeling & Simulation Certificate Program Learning Outcomes

At the successful completion of this program, students will be able to:

- 1. Facilitate higher-order reasoning and problem-solving skills, develop collaboration abilities and refine general employability and occupation-specify skills.
- 2. Formulate an open-ended problem by considering the detail of the problem and define manageable questions to address that will lead to some conclusions or scientific results.
- 3. Construct the problem into mathematical model using multiple mathematical and statistical representations of relevant structures and relationships.
- 4. Compute and evaluate the solution to interpret the mathematical solution in the original context and communicate the results in an interdisciplinary setting.